
Introduction to the Standard Model
William and Mary PHYS 771 Spring 2014

Instructor: André Walker-Loud, walkloud@wm.edu
(Dated: May 14, 2014 0:25)

Class information, including syllabus and homework assignments can be found at
http://ntc0.lbl.gov/~walkloud/wm/courses/PHYS_771/

or
http://cyclades.physics.wm.edu/~walkloud/wm/PHYS_771/

Homework Assignment 2: due no sooner than Wed., 26 February

1. [25 pts.] For a compact Lie group, we discussed the importance of the Cartan subal-
gebra, H spanned by the maximal set of commuting generators,

H†i = Hi, [Hi, Hj] = 0, Tr(HiHj) = λδij, Hi|µ, x,D〉 = µi|µ, x,D〉, (1)

where ?i are the weights, x is other information needed to describe the state and D
is the representation. We discussed in the adjoint representation, [Ta]bc = −ifabc,
the states can be described by the generators, as the same label describes both the
generators (a) and the states (elements of the matrix (b, c)). This led to important
properties, such as linear combinations of states correspond to linear combinations of
generators

a|Xa〉+ b|Xb〉 = |aXa + bXb〉 (2)

with a convenient scalar product

〈Xa|Xb〉 = λ−1Tr(X†aXb) (3)

which allowed us to determine the action of a generator on a state

Xa|Xb〉 = |[Xa, Xb]〉 (4)

and so the states which correspond to the Cartan subalgebra satisfy

Hi|Hj〉 = 0 (5)

while other states corresponding to the rest of the generators satisfy

Hi|Eα〉 = αiEα → [Hi, Eα] = αiEα, [Hi, E
†
α] = −αiE†α → E†α = E−α, (6)

and [Eα, E−α] = α ·H.

In the adjoint representation, these non zero weights αi are called roots and uniquely
specify the states. For each non zero pair of root vectors, ±α, there is an SU(2)
subalgebra of the group, with generators

E± ≡ |α|−1E±α, E3 ≡ |α|−2α ·H. (7)



2

(a) what are the commutation relations

[E3, E±] =?

[E+, E−] =? (8)

[5 pts.] Solution: see attached notes

(b) in SU(3), what are the explicit commutation relations [E+, E−] for all SU(2)
subalgebras?

[6 pts.] Solution: see attached notes

(c) in SU(3), calculate f147 and f458.

[2 pts.] Solution: see attached notes

(d) SU(2) subalgebra of SU(3):

[6 pts.] Solution: see attached notes

i. show that t1, t2 and t3 generate an SU(2) subalgebra of SU(3)

ii. take t3 as the Cartan generator of the subalgebra and the raising lowering
operators as t± = (t1 ± it2)/

√
2. What are the eigenvectors in this repre-

sentation, |1〉, |2〉, |3〉 and their corresponding weight vectors? Which is the
lowest?

iii. Is there an invariant subspace in this representation? (do the raising/lowering
operators span the space of these eigenvectors?)

(e) same as problem 1d except with t2, t5 and t7
[6 pts.] Solution: see attached notes

2. [15 pts.] We discussed the need for a new quantum number, color, to explain the
|∆++〉 and |Ω〉 decuplet states, which have totally symmetric spin and flavor wave-
functions. This also leads us to require the combined spin and flavor wave-functions
of the octet baryons are totally symmetric, which can be constructed for example as

|B ↑〉 =
1√
2

(
|ψSf 〉|ψSs 〉+ |ψAf 〉|ψAs 〉

)
(9)

where the mixed-symmetric and mixed-anti-symmetric spin wave-functions are

| ↑ S〉 =
1√
6

(| ↑↓↑〉+ | ↓↑↑〉 − 2| ↑↑↓〉)

| ↑ A〉 =
1√
2

(| ↑↓↑〉 − | ↓↑↑〉) (10)

where the ordering of the labels correspond to quark 1,2 and 3 in the proton wave-
function. Similarly, the proton mixed-symmetric and mixed-anti-symmetric flavor
wave functions are

|pS〉 =
1√
6

(|udu〉+ |duu〉 − 2|uud〉) ,

|pA〉 =
1√
2

(|ud〉 − |du〉) |u〉

=
1√
2

(|udu〉 − |duu〉) , (11)
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where the total proton spin-up spin-flavor wave-function is

|p ↑〉 =
1√
18

[
|uud〉 (| ↑↓↑〉+ | ↓↑↑〉 − 2| ↑↑↓〉)

+ |udu〉 (| ↑↑↓〉+ | ↓↑↑〉 − 2| ↑↓↑〉)

+ |duu〉 (| ↑↓↑〉+ | ↑↑↓〉 − 2| ↓↑↑〉)
]

(12)

and recall the ordering of the labels is correlated

|uud〉 ⊗ | ↑↓↑〉 = |uud〉| ↑↓↑〉 = |u ↑, u ↓, d ↑〉 ,
〈uud|〈↑↓↑ | |uud〉| ↑↑↓〉 = 0 (13)

This is not the only way to construct an anti-symmetric wave-function for the octet
baryons. For example

|p ↑〉A =
1√
2

(|pA〉| ↑ S〉 − |pS〉| ↑ A〉) (14)

is a totally anti-symmetric wave-function, without the need for color.

(a) following Eq. (14), determine the neutron spin-flavor wave-function in full detail
as in Eq. (12)

[5 pts.] Solution: see attached notes

(b) compute the proton magnetic moment with Eq. (14) as we did in class

[8 pts.] Solution: see attached notes

(c) what is
µn
µp

=? (15)

with these anti-symmetric, colorless wave-functions? How does it compare with
experiment?

[2 pts.] Solution: see attached notes

3. [20 pts.] In class, we determined the hyper-fine quark-quark interaction Hamiltonian
for the N −∆ and Λ− Σ systems;

HS·S′ =
2

3

∑
j 6=k

κjκk ~Sj · ~Sk , κj =
κ

mj

(16)

where κ is a constant proportional to the quark chromo-magnetic moment, with mass
dimension 3/2 and mj is the constituent quark mass for quark flavor j (the strong
interactions are flavor blind so κ is the same for all quarks). We worked out

HΛΣ
S·S′ =

2

3

κ2
l

 1/4
1/4
−3/4

+ κlκs

1/2
−1
0

 for

 Σ∗ Sd = 1 ST = 3/2
Σ Sd = 1 ST = 1/2
Λ Sd = 0 ST = 1/2

(17)

where κu = κd = κl for the light quarks and Sd is the spin of the light di-quark and
ST is the total spin.
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(a) determine the equivalent expression, Eq. (17) for the Ξ-Ξ∗ system.

[8 pts.] Solution: see attached notes

(b) determine HS·S′ for the spin-0 and spin-1 mesons

[10 pts.] Solution: see attached notes

(c) assuming that κ in the baryons is the same as the mesons, relate m∆ −mN to
mρ −mπ and compare to the experimental values

[2 pts.] Solution: see attached notes
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